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Abstract— This paper presents a selective wavelet shrinkage
algorithm for digital image denoising. The performance of this
method is an improvement upon other methods proposed in
the literature and is algorithmically simple for large computa-
tional savings. The improved performance and computational
speed of the proposed wavelet shrinkage algorithm is pre-
sented and experimentally compared with established methods.
The denoising methodology incorporated in this new algorithm
involves a two-threshold validation process for real-time selec-
tion of wavelet coefficients. The two-threshold criteria selects
wavelet coefficients based on their absolute value, spatial reg-
ularity, and regularity across multiresolutional scales.

The proposed algorithm takes image features into considera-
tion in the selection process. Statistically, most images have
regular features resulting in connected subband coefficients.
Therefore, the resulting subbands of wavelet transformed im-
ages in large part do not contain isolated coefficients. In the
proposed algorithm, after coefficients are selected due to their
magnitude, image features in terms of spatial regularity are
used to further reduce the number of coefficients kept for im-
age reconstruction.

The proposed wavelet denoising technique is unique in that its
performance improved upon several other established wavelet
denoising techniques as well as being computationally efficient
to facilitate realtime image processing applications.

1. INTRODUCTION

The recent advancement in multimedia technology has pro-
moted an enormous amount of research in the area of im-
age and video processing. Included in the many image and
video processing applications such as compression, enhance-
ment, and target recognition are preprocessing functions for
noise removal. Noise removal is one of the most common and
important processing steps in many image and video systems.

Because of the importance and commonality of preprocessing
in most image and video systems, there has been an enormous
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amount of research dedicated to the subject of noise removal,
and many different mathematical tools have been proposed.
Variable coefficient linear filters [8, 10}, adaptive median fil-
ters [3], DCT based solutions [9], cluster filtering [11], etc.
have all been proposed in the literature.

The wavelet transform has also been used to suppress noise
in digital images. It has been shown the reduction of abso-
lute value in wavelet coefficients is successful in signal restora-
tion [5]. This process is known as wavelet shrinkage. Other,
more complex denoising techniques select or reject wavelet
coefficients based on their predicted contribution to recon-
structed image quality . This process is known as selective
wavelet shrinkage, and many works have used it as the pre-
ferred method of image denoising [2,4-7].

Two of the frontrunners in selective wavelet shrinkage for the
removal of noise, Mallat and Hwang prove the successful re-
moval of noise in signals via the wavelet transform, by select-
ing and rejecting wavelet coefficients based on their Lipschitz
exponents [5]. Although this fundamental work in image de-
noising is successful in the removal of noise, its application is
broad and not focused on image noise removal, so the results
are not optimal.

Malfait and Roose refined the selective shrinkage denoising
approach by applying a Bayesian probabilistic formulation,
and modelled the wavelet coefficients as Marcov random se-
quences [6]. This method is focused on Image de-noising and
its results are an improvement upon [5].

Later, Pizurica, et al. continued on the work done by [6]. This
work applied a statistical probabilistic model that extended to
both spatial and multiresolutional coefficient redundancies to
decide on important and unimportant values [7].

Although both algorithms in [6] and [7] give adequate results
in denoised image quality, their computational complexities
make them impractical for most image and video processing
applications.

We have developed a new selective wavelet shrinkage algo-
rithm which has a distinct aspect. It uses a double validation
process to select wavelet coefficients for quality image recon-
struction. Furthermore, the algorithm is much more efficient in
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computational complexity than previous works. The algorithm
is comprised of three processing steps which are common to all
selective wavelet shrinkage algorithms mentioned previously.
First, a corrupted image is decomposed into multiresolutional
subbands via the wavelet transform. Next, wavelet coefficients
are selected or rejected based upon criteria developed by the al-
gorithm designer. Finally, the denoised image is formed by re-
constructing the remaining coefficients via the inverse wavelet
transform. The processing step of most cost computationally
and most important in denoising performance is the coefficient
selection process, which calls for effective and efficient criteria
to select or reject wavelet coefficients.

This double validation method for selecting wavelet coeffi-
cients results in a denoising algorithm which gives improved
results upon [5-7], but without the computational complexity.
The two-threshold requirement investigates the regularities of
wavelet coefficients both spatially and across scales for predic-
tive coefficient selection, providing selective wavelet shrinkage
to non-decimated wavelet subbands.

Following the Introduction, Section 2 gives a wavelet overview
and theory on the 2D non-decimated wavelet analysis and
synthesis filters. The proposed denoising algorithm is ap-
plied to non-decimated wavelet coefficients. Section 3 then
describes the coefficient selection process prior to selective
wavelet shrinkage. Section 4 gives testing results for param-
eter selection. Section 5 gives the estimation algorithms for
proper parameter selection, and Section 6 gives the results and
discussion.

2. WAVELET OVERVIEW
Wavelet Filterbank Theory

Let ax [n] be scaling coefficients of scale k and position n, and
let h[n] be the filter coefficients corresponding to the scaling
function. From wavelet theory, we know

ak,,[n] = Zak[m]h[m — 2n], (D)

where the coefficients ax,, [n] represent a coarser resolution
then ax[n]. Equation 1 indicates that the scaling function co-
efficients ay.,, scale can be obtained by convolving a reversed
h[n] with ax, and downsampling by two.

Very similarly,
iy, [n] = Z ax[m]g[m — 2n], 2)
m

where dy [n] are the wavelet coefficients of scale k and position
n. gln] is the set of filter coefficients corresponding to the
wavelet.

From Equations 1 and 2, we can obtain increasingly coarser
scales of scaling coefficients, ay, ,, and wavelet coefficients,

d.,, [n], by convolving the scaling function coefficients, ay [n]
by both a reversed scaling function filter, h[n], a reversed
wavelet filter, g[n], and downsampling by two. Figure 1 gives
a block diagram of the wavelet analysis filterbank.

[

dy o)

Figure 1- Wavelet Decomposition

Because each filtered output is downsampled by two, the same
number of total coefficients remains the same, regardless of the
number of resolution levels, k.

The reconstruction of finer scaling coefficients is obtained by,

akln] =3, ak,,[mlh[n — 2m]
k + zr: dk+1 [m]g[n - 2m] . ©)]

From Equation 3, we can the obtain an arbitrarily fine scale
representation of a signal by upsampling the scaling and
wavelet coefficients, and filtering the coefficients with their
respective filters, h[n] and g[n]. The wavelet reconstruction
block diagram is given in Figure 2.

.o Giyafn)

o)

Figure 2 - Wavelet Reconstruction

Non-Decimated Wavelet Transform

In certain applications such as signal denoising, it is not de-
sirable to downsample the wavelet coefficients after decom-
position, because the spatial resolution of the coefficients
is degraded due to downsampling. Therefore, for the non-
decimated case, each subband contains the same number of
coefficients as the original signal. So we must have

ar[2¥t1n] = ax[n]
A [25Hn] = di[n], )

where ay[n] are the non-decimated scaling function coeffi-
cients, and Ay[n] are the non-decimated wavelet coefficients.
We can substitute Equation 4 into Equation 1 to find

;[0 = 3, h[m]ak[m — 2n)
PR L, imlog 2 m—2m)] (5
ak,.[n] =3, hmlax[2F+1m — n].

723




KIMAS 2003 BOSTON, USA

The 2%+ scalar introduced into Equation 5 is the equivalent of
upsampling h[n] by k + 1 prior to its convolution with c[n).
Similarly we substitute Equation 4 into Equation 2 to obtain,

Mepa[n] = 5, glmlax[24+1m — n], ©

Figure 3 gives a block diagram of the non-decimated wavelet
decomposition.

B ) Aylr]

paln]

Hiz=eh)

A

Figure 3 - Non-decimated wavelet decomposition

The synthesis of the non-decimated wavelet transform also dif-
fers from the downsampled case. From Equation 3, we have

ak[2n] = Z h[2(n— m)]ak+1 (m] +Z g[2(n— m)]dk+l [m].
m m o

Substituting (p = n — m) we obtain,
=Y h2plar,,[n—pl+ Y _ g2p)dr,,[n — p]. (8)
P P

) [271]

Substituting Equation 4 into Equation 8 we have,

ak[2k+2n] Z h[2p]ak+1[2k+2 (n - p) )
+ Y, 91200k, 242(n — )]
nd
: ak[’fl] Z h[2p]ak+1[n — 2k+2 ] (10)

+Z gl2p) Ak, [n — 25+2p).

Looking at Equation 10 information is being thrown away by
downsampling o, [n] and Ak, [n] by 2 prior to convolution.
Because the downsampling in the analysis filters is eliminated,
a downsample by 2 is shown in the synthesis equation, Equa-
tion 10. If a downsample by 2 is not performed, i.e. (m = 2p),
then we must divide by 2 to provide power equality. That is,

Z h’[ ]ak+1 [TL —251m
Z g[m]Ak'H [n— 2k+1m]

Figure 4 gives a block diagram of the non-decimated wavelet

transform synthesis.
G (Zk+1) .....

H (ZK-H

ok [n] =

(11)

6(22) |- Aulnl 8

Ty aln

i

Figure 4 - Non-decimated wavelet synthesis

‘We can expand to the two-dimensional case. For a 2-D discrete
signal, f we have,

h[n)h[m]ay k28 m — z,28+1n — 4]

Uk [T, Y] = D m

At ki [z, y] = Zn,m h[n]g[m]all,k[2k+1m - 2,21 — Y]

At [2,Y) = X g[nIR[M]cu k25 m — 2, 250 — )

/\hh,k+1 [x,y] = Zn,m 9["]9[m]all,k[2k+lm ~z,2"n — v,
(12)
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where

f(z,y) = ay, 1]z, y]. (13)
The four coefficent sets given in Equation 12 is referred to as
the low-low band, oy; x, , , the high-low band, Ap; k., , the low-
high band, Aip &, ,, and the high-high band, Axp k., ,. The sub-
bands are named due to the order in which the scaling and/or
the wavelet filters process the scaling function coefficients.

For the synthesis of f we have

A im  hmlhnlea iy, [z — 25HIm, y — 25+ 1n]
+ Em n [m]g[n]Ahl ki1 [:17 - 2k+1m Yy~ 2k+1n]
+3 Xmn 9B Ain iy, [2 — 25F0m, y — 26F1n)

+3 Zm » 9[mlg[n|Ann i, [z — 2’°+1m y — 2k+1p)
(14)

o klz,y) =

3. COEFFICIENT SUPPORT

One of the many advantages of the wavelet transform over
other mathematical transformations is the retention of spatial
information in the wavelet domain. Because of this informa-
tion retention, there exists a spacial regularity in the sub-bands
of wavelet transformed images. Statistically, most images have
regular features resulting in connected subband coefficients.
Therefore, the resulting subbands of wavelet transformed im-
ages in large part do not contain isolated coefficients. This
regularity can aid in deciding which coefficients should be se-
lected for reconstruction, and which should be thrown away
for maximum reconstructed image quality. The correlation be-
tween coefficients in wavelet sub-bands has been discovered
by many works, but our method in which this spacial regular-
ity is exploited is unique.

We start with an image signal corrupted with additive noise,
ie.

f(a:,y) =f(x,y)—|—n(a:,y), (15)

where f(x,y) is the noiseless 2D signal, n(z, y) is a random
noise function, and f(z,y) is the corrupted signal.

The wavelet transform of f(a:, y) generates coefficients, X.,k
using Equations 12 and 13. A j is used to create a boolean
coefficient map, [. ;.

1, [X.,k[a:, yl[ >
0,else )

{

A valid coefficient is defined as a coefficient value, A ez Y,
which resuls in I. x[z,y] = 1, hence the coefficient has been
selected due to its magnitude.

Lilz,y]= (16)

After coefficients are selected by magnitude, spacial regularity
is used to further reduce the number of coefficients kept for
image reconstruction.

From I. ; we can count the number of support pixels around
a particular I x[z,y]. S. x[z,y] is the sum of all I ; which
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support the current boolean value I x [z, y]; that is, the total
number of all valid coefficient values which are spatially con-
nected to I [z, y].

We say that a coefficient is spatially connected to another if
there exists a path of valid coefficients between the two, in
any direction. Figure 5 gives a generic coefficient map. The
valid coefficients are highlighted in gray. From Figure 5 it can
be shown that coefficients A, B, C, and H do not support any
other coefficients in the coefficient map. However, coefficients
D and F support each other, coefficients E and G support each
other, and N and O support each other. Also, coefficients I, J,
K,L, M, P, and Q all support one another.
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Figure 6 gives the value of S. [z, y] for each of the valid coef-
ficients given in Figure 5.
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Figure 6 - Generic Cocfficient Array, with corresponding S. . values

An algorithm for computing S. x[z,y] is given in the Ap-
pendix. S. x is used to refine the original coefficient map I. x
by

1L,S klz,y] > s

0,else an

Joklz,y] =

where J. [z, y] is the refined coefficient map, and s is the nec-
essary number of support coefficients.
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Not only do coefficients of wavelet transformed images have
spatial regularity, they also have regularity across scales.
Therefore, to exploit this regularity, we have

Xoklz ], Joklz, vl + Jokelz, vk,
Lo, y] = o':z[:ey] ke, Y] + T -1z, Y11 k[z,y] > 0

(18)

The de-noised image is then reconstructed using the supported
coefficient values, L x[z,y] in the synthesis equation given in
Equation 14. Thus, we have

&ll,k[tr, y] = % Zm’n h[m]h[n]éz”,k“ [SL‘ - 2k+1m, Y- 2k+1n]
+3 Lo hlmlg[n) Lare,, [z — 25 im, y — 25+ 1n)
+3 X MR Lin gy (2 — 25F0m,y — 25H1n)
+1 > omn 9l Lan ey, [ — 2ktim gy — 2k+1y]

(19)
where

f(m7 y) = CA!ll,—--l[xa:lxl]- (20)
Ay i and f are the reconstructed scaling function coefficients
and denoised image, respectively.

4. TEST IMAGES AND SELECTION OF
THRESHOLD 7 AND SUPPORT s

In the above algorithm, we select wavelet coefficient values
based upon a threshold value 7 and a support value s. So now
we must obtain choices for these values for optimal image de-
noising. We start with a series of test images, given in Figure
7. These test images are to be used in choosing the values for
T and s.

Figure 7 - Test Images

The test images are all 256x256 in size. Starting from the up-
perleft image and going clockwise, the images are “Lenna”,
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”Airplane”, "Fruits”, and "Girl”. All of these images are well
known standards in the area of image processing.

‘We begin testing for the optimal values of 7 and s by artificially
adding Gaussian noise to each of the four images, denoising all
four images with a particular 7 and s, and recording the aver-
age Peak Signal-to-Noise Ratio (PSNR). PSNR of an image is
defined by

255
PSNR = 20logw (_T;;;) , (21)
where
1 R 2
mses = 7= > (fla) - f@y) . @)
x,y

M and N are the width and height of the images, respectively.

The Haar wavelet is selected for image denoising:

—1 =0
4 =0.1 V2 T
-{v "=5 ={ X .=
w={ 3% o o={ gion=1 @)

The Haar wavelet is used in a non-decimated wavelet decom-
position of the original image. 6 subband levels are used, i.e.
k = —1 to 5. The proposed selective wavelet shrinkage algo-
rithms is applied to all wavelet subbands, and the subbands are
synthesized by the non-decimated wavelet inverse transform.

Preliminary tests had shown the Haar wavelet has the most
promise in reconstructed image quality. The compact support
of the Haar wavelet enables the generation of wavelet coeffi-
cients which represent the least amount of original pixel data.
Therefore, when a coefficient is removed because of its in-
significance. The result affects the least number of pixels in
the reconstruction.

We recorded each of the PSNR averages for 7 ranging from
0 — 100 and s ranging from 0 — 15. We tested the proposed
algorithm by applying additive white Gaussian noise (AWGN)
with a standard deviation (¢,) of 10, 20, 30, 40, and 50, to each
of the test images. Our method of selective wavelet shrinkage
is applied to the corrupted image, and the resulting PSNR is
recorded. The results of the testing in which o, = 30 is given
in Figure 8. ‘

Figure 9 gives the 7 and s which provide the largest average
PSNR for each noise level. We will refer to these particular
values as T,, and s,,. Figure 9 suggests that parameters 7,,
and s,, are functions of the standard deviation of the artificial
noise, oy,.

5. ESTIMATION OF PARAMETER VALUES

Noise Estimation

It can be shown from the values given in Figure 9 that the pa-
rameters 7,,, and s,,, are functions of o,,, therefore we can ob-

PSNR Results with noise, o = 30

PSNR

spatial support pixels, 8 Throshold value, t

Figure 8 - PSNR Results for Test images, o =30

‘Noise Level {on) 10! 20 30 40
Max. Avg. PSNR Y 3342:  3018: 2834 2707
opvale 2 .3 5 9
4 value 14 28 38 46

Figure 9 - Maximum average PSNR of test images for various noise levels
and their corresponding threshold and support values

tain an estimate of the optimal values for 7 and s from the
standard deviation of the noise level. However, the level of
noise in a given digital image is unknown. So we must first
estimate the noise. Several well known algorithms have been
given in the literature to estimate image noise. From [1,7] a
median value of the App o subband is used in the estimation
process. However, retrieving the median value in a subband
requires a sorting algorithm which is computationally expen-
sive. We propose an averaging noise estimation algorithm. A
threshold value, € is used to sort out strong signal (edge) coef-
ficients from the noisy data.

1
€= 37 O Pwnolz v, @4
T,y

where € is a measure of the average magnitude of a coefficient
in the App 0 subband. We also have,

_ [ 1,5¢> [Ann,olz, 9|

plz,y] = 0, else | ] ) (25)
In our noise estimation, we use an average of wavelet coef-
ficients instead of a median. The result is a computationally
simpler estimate of the image noise. p(z, y] is used as a refine-
ment parameter to remove large signal values located in the
Ann,o subband. We estimate the noise by,

— 2
In=F Zp[m,y]lkhh,o[?ﬂ,y” (26)
z,y

where K is the number non-zero terms in the summation of
Equation 26.
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Parameter Estimation

Using the known level of noise added to the original images,
we can estimate the values of 7,, and s,, given in Figure 9.
We use the LMMSE (Linear Minimum Mean Squared Error)
as the estimation procedure. That is, we find two parameters

a- and b, such that
Tm(on) = aron + br. X))

The choise a, and b, will minimize the mean squared error
(mse):

mse; =Y (Tm(0n) = Tm(0n))?. (28)
On
Similarly, we find an estimate of s
g;In(o'n) = ay0, + b 29
where a, and b, are chosen to minimize
mses = Z(sm(an) — 5m(on))2 30)

On

From the data given in Figure 9, the values of a., b, a,, and
bs. are found

ar =114
br =340
as =021 (31)
b, = 0.60

The values of 7,,, and s, are given in Figure 10 as well as the
corresponding LMMSE estimates, given in Equation 31. As
given in Figure 10 the estimated values are the best linear fit
into the data. Note that the support value s must be an integer
value.

threshold and support estimation based upon noise level
T T T

80 T T
% Threshold lovel for max_ PSNA e
v 80| |~ Threshold Estimate . ol 4
g et
2 LT
3 40 ue 4
s 20f Pt E
s -x
0 - L 1 i 1 1
0 10 20 30 40 50 60
noise leve! (sltandard deviation, o)
14 T T T T T
» 121 | x Local support value for max. PSNA Pl '-
; = # Estimat !
£ g0} support Estimate P |
s e
=8k e T i
-] .
& !
g 6 - 4
a i x
§ ar - 4
s ———— x
21 rowd p
Py S L 1 I 1 i
0 10 20 40 50 60

noise level (standard deviation, o)

Figure 10 - Optimal values for 7., and s, and their corresponding esti-
mates, 7o and 35,

The threshold value 7 and the support value s will be deter-
mined by
= afa'vn + b,

asa"'r: + bs (32)

6. RESULTS

The images ”peppers” and “house” are used for gauging the
performance of our denoising algorithm. These two images
have also been used in the results of [5-7]. Therefore, we can
compare our performace with other recent algorithms given in
the literature.

We have corrupted both the peppers image and house image
AWGN and used the proposed method for denoising. The re-
sults are given in Figures 12 and 13.

"Peppers”
19.6

image input PSNR Average |

fait and Roos
llat and Hwang, [5}
:Matlab's Sp. Ad. Wiener

Figure 11 - PSNR Comparison of the of the proposed method to other meth-
ods in the literature
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Figure 12 - Results of the proposed image denoising algorithm. Top left:
Original “peppers” image, top right: Corrupted Image, o, = 37.75 ~ PSNR
= 16.60, bottom left: denoised image with estimated 7 and s = 0 - PSNR =
25.76 , bottom right: denoised image with estimated 7 and s — PSNR =27.05

Figure 11 gives the results of our proposed method, as well
as the results of [5~7]. As shown in Figure 11, the results of
the proposed method are an improvement to other methods de-
scribed in the literature.
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Figure 13 - Results of the proposed image denoising algorithm. Top left:
Original "house” image, top right: Corrupted Image, o5 = 32.47 — PSNR =
17.90, bottom left: denoised image with estimated 7 and s = 0 —~ PSNR =
28.10, bottom right: denoised image with estimated 7 and s — PSNR = 30.08

In addition to improved performance, the proposed algorithm
is computationally simple to facilitate real-world applications.
However, computational simplicity is a fairly difficult metric
to determine when dealing with older literature. The process-
ing ability of modern computers gives more recent literatures’
algorithms processing time an unfair advantage. However, the
computation time of the proposed method is at least an order
of magnitude greater than previous methods, and we have done
testing on some older machines for a more accurate compari-
son. Figure 14 gives the computational results of the proposed
method as well as the results of [6,7].

‘Processor __ |Pentium IV !Pentium il | IBM Rssoonrson
vProposed Algorithm : i
; 3-b -
iMalfait and Roose, [4] 180.00

Figure 14 - Computation Times for a 256x256 Image, in seconds

Although this is not a true comparison of the difference com-
putational complexity between the proposed algorithm and that
of [6,7], the proposed algorithm does show a substantial drop
in computation time.

In this paper, a new selective wavelet shrinkage algorithm for
image denoising has been described. The proposed algorithm
uses a two-threshold support criteria which investigates coef-
ficient magnitude, spatial support, and support across scales
in the coefficient selection process. The computationally sim-
ple algorithm facilitates real world applications and the perfor-
mance results are an improvement upon established methods

described in the literature.

7. APPENDIX

The computation of S. [z, y] if given from the following al-
gorithm:

= {[_17 "‘1]’ [_1’0]’ [—'17 I]a [Ov '_1]1
[0?1]7[1’_1]7[1’9],[171]}
0=0,t=0, p=0, D ,(0)=
if Lylz,yl==1,
while D.(t) # NULL,
(i1j):D-,k(t)
=741
for m=0 to 7,

(z,9)

if ((Lxl@65) + N(m)] ==1) (33)
and (O[(z,) + N(m)] == 0)),
p=p+1 .
D.u(p) = (i) + N(m))
O[(i,5) + N(m)] =1,
end if
end for
end while
end if
S klz,y) =t

Olz,y] is a boolean value to determine whether a particular
I [z, y] value has been counted previously. D is an array of
spatial coordinates of valid coefficients that support the current
coefficient value I. x [z, y]. N is a set of vectors corresponding
to neighboring coefficient values.
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